Synthesis and Anti-Human Immunodeficiency Virus Activity of 4'-Branched (\pm) -4'-Thiostavudines

Hiroki Kumamoto,[†] Takahito Nakai,[†] Kazuhiro Haraguchi,[†] Kazuo T. Nakamura,[†] Hiromichi Tanaka,^{*,†} Masanori Baba,[‡] and Yung-Chi Cheng[§]

School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan, and Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520

Received August 14, 2006

Motivated by our recent finding that 4'-ethynylstavudine (4) is a promising anti-human immunodeficiency virus type 1 (HIV-1) agent, we synthesized its 4'-thio analogue, as well as other 4'-thiostavudines having a carbon substituent at the 4'-position, as racemates in this study. Methyl 3-oxo-tetrahydrothiophen-2-carboxylate (5) was used as a starting material to construct the requisite 4-thiofuranoid glycal (13). Introduction of a thymine base was carried out by an electrophilic addition reaction to 13 using *N*-iodosuccinimide (NIS) and bis(trimethylsilyl)thymine. The desired β -anomer (16 β) obtained as a major product in this reaction underwent ready elimination with activated Zn to give the 4'-carbomethoxy derivative (18). By using 18 as a common intermediate, 4'-carbon-substituted (CH₂OH, CO₂Me, CONH₂, CH=CH₂, CN, and C=CH) 4'-thiostavudines were prepared. Among these six compounds, 4'-cyano (28) and 4'-ethynyl (29) analogues were found to show inhibitory activity against HIV-1 with ED₅₀ values of 7.6 and 0.74 μ M, respectively. The activity of 29 was comparable to that of stavudine, but 29 was not as active as 4. Optical resolution of 29 was briefly examined.

Introduction

Nucleosides in which the furanose ring oxygen is replaced with a sulfur atom are called 4'-thionucleosides, and the first report dealing with this class of nucleosides appeared in 1964 for the synthesis of 4'-thioadenosine (1).¹ A renaissance of 4'thionucleosides began in 1991 when potent antiviral and antitumor activities were found in 4'-thiothymidine (2) and 2'deoxy-4'-thiocytidine (3) (Figure 1).² Extensive synthetic studies³ carried out since then have led to the finding of several biologically interesting compounds.⁴⁻⁶

Meanwhile, our recent studies on the reaction of organoaluminum reagents with nucleosides bearing an epoxy-sugar structure^{7,8} has disclosed that 2',3'-didehydro-3'-deoxy-4'ethynylthymidine (**4**, Figure 2) is more potent against human immunodeficiency virus (HIV) than the parent compound stavudine (d4T) and much less toxic to various cells and also to mitochondrial DNA synthesis.^{8,9} This compound has several potential advantages as a promising anti-HIV agent: (1) it is a better substrate for human thymidine kinase than d4T, (2) it is very much resistant to catabolism by thymidine phosphorylase, and (3) its activity improves in the presence of a major mutation, K103N, known for nonnucleoside reverse transcriptase inhibitor resistant HIV.^{9,10}

In this paper, as a study on the structure—activity relationship regarding **4**, we describe the synthesis and anti-HIV activity of the (\pm) -4'-thio-counterpart of **4**, as well as other 4'-thiostavudine analogues having carbon substituents at the 4'-position.

Results and Discussion

A synthetic plan for the title compounds is depicted in Scheme 1 as a retrosynthetic analysis. The desired 4'-thiostavudine

[‡] Kagoshima University.

analogues **I** with a variety of 4'-carbon substituents can be prepared from **II** by manipulation of the 4'-carbomethoxy group. Two possible approaches were envisioned for the preparation of **II**: one is a Pd-catalyzed allylic substitution of **IV**, and the other is an electrophilic glycosylation followed by elimination of X and OR' from **III** (**IV** \rightarrow **III** \rightarrow **II**). We anticipated that the known tetrahydrothiophene derivative **5** could be used for the preparation of **IV**.

Compound 5 used as the starting material was prepared according to the published procedure.¹¹ An aldol reaction between 5 and formaldehyde gave 6 (95%), which was then

^{*} Corresopnding author: tel 81-3-3784-8186, fax 81-3-3784-8252, e-mail hirotnk@pharm.showa-u.ac.jp.

Showa University.

[§] Yale University.

O-silylated to yield **7** (89%) (Figure 3). Transformation of **7** to the enone **8** (92%) was performed in CH₂Cl₂ by a Pummerertype reaction using *N*-chlorosuccinimide (NCS). Treatment of **8** with NaBH₄/CeCl₃¹² in MeOH/THF ($-50 \,^{\circ}$ C, 1 h) followed by column chromatography gave a mixture of **9** and its epimer with a ratio of *ca*. 10/1 (89% combined yield) along with a minor byproduct (*ca*. 6%) that was assumed to be the 2-carbaldehyde (**10**) based on its ¹H NMR (δ 9.82, CHO) and FAB-MS (*m*/*z* 437, M⁺ + K) spectra. The depicted stereochemistry of **9** was confirmed by NOE experiment, as well as X-ray crystallographic analysis, after introduction of thymine base. The stereoselectivity observed in 1,2-reduction of **8** has a precedent in the case of methyl 1-methyl-2-oxo-3-cyclopentenecarboxylate.¹³ Conventional acylation of **9** gave the respective products (**11**–**14**).¹⁴

For the introduction of a thymine base, Pd-catalyzed allylic substitution¹⁵ was first examined by using **11** as a substrate. However, attempts made by changing the catalyst [Pd(Ph₃P)₄, Pd₂(dba)₃/Ph₃P, (η^3 -C₃H₅PdCl)₂/Ph₃P], the thymine derivative (N^3 -benzoylthymine, bis(trimethylsilyl)thymine), or the solvent (THF, DMSO/THF, DMF) resulted in the recovery of **11**. The desired glycosylated product was formed only upon reacting the carbonate **14** with bis(trimethylsilyl)thymine in the presence of Pd₂(dba)₃/Ph₃P (in THF at 60 °C), but the yield was only 8%. These results led us to apply the second approach, electrophilic glycosylation and subsequent elimination.

Electrophilic glycosylation using thiofuranoid glycals has previously been reported from our laboratory.¹⁶ As shown in Scheme 2, when the acetylated thiofuranoid glycal **11** was reacted with bis(trimethylsilyl)thymine (1.5 equiv) in the

presence of N-iodosuccinimide (NIS) (1.5 equiv) as an electrophile in CH₃CN (at rt, overnight), a mixture of the β -anomer (15 β) and α -anomer (15 α) [NOE data 15 β , H-1'/H-3' (7.8%) and H-6/H-2' (11.6%); 15a, H-2'/H-6 (12.3%) and H-2'/H-3' (11.8%)]¹⁷ was formed in 40% combined yield. The diastereomeric ratio of $15\beta/15\alpha = 5/1$ was determined on the basis of ¹H NMR spectroscopy by comparing integration of H-2'. One might expect that the presence of a more bulky acyl protecting group would encourage the more efficient iodonium formation at the α -face of the thioglycal **11**, thus leading to a higher ratio of the desired β -anomer. This appeared, however, not to be the case. When the pivalate 12 was subjected to the glycosylation under the same reaction conditions as described above, equal amounts of 16β and 16α [NOE data 16β , H-2'/H-6 (13.9%) and H-2'/H-5' (1.7%); 16a, H-2'/H-6 (13.9%) and H-2'/H-3' (10.3%)] were formed in 88% combined yield. The highest β -selectivity (17 β /17 α = 10/1) and combined yield (98%) were seen in the case of the benzoate 13. Moreover, in this particular case, the desired β -anomer (17 β) was isolated from the anomeric mixture simply by crystallization. The stereochemistry of 17β was confirmed on the basis of its NOE data [H-2'/H-5' (1.2%)]and H-3'/H-1' (2.9%)], while that of the α -anomer (17 α) was determined by X-ray crystallographic analysis.18

Compound 17β was found to readily undergo elimination with activated Zn.¹⁹ Thus, treatment of 17β with the activated Zn in THF/AcOH at rt for 1 h gave the 4'-carbomethoxy derivative (18) of 4'-thiostavudine in 99% yield (Scheme 2). Attempted direct transformation of 18 to its 4'-formyl derivative (*e.g., i*-Bu₂AlH in CH₂Cl₂ or THF) all met with concomitant formation of the 4'-hydroxymethyl derivative (19). Therefore, 18 was converted to 19 (98%) by reacting with an excess amount of NaBH₄ in MeOH/THF, and then the resulting 19 was oxidized with (CF₃CO)₂O/DMSO in CH₂Cl₂ at -80 °C to give the aldehyde 20 in 97% yield.

Preparation of the 4'-ethynyl derivative (21) from 20 was examined. The reaction between 20 and Me₃SiCHN₂/lithium diisopropyl amide (LDA)²⁰ gave several unknown byproducts, and the desired 21 was isolated only in 20% yield. This result presumably originates in the highly basic nature of LDA, which is needed to generate an anionic species from Me₃SiCHN₂. In fact, the use of dimethyl 1-diazo-(2-oxopropyl)phosphonate²¹ in combination with K₂CO₃ in MeOH gave 21 in a higher yield of 85% (Scheme 2). To generate the Wittig reagent Ph₃P=CH₂ from methyltriphenylphosphonium bromide required for the preparation of the 4'-vinyl derivative 22, methylsulfinyl carbanion was found to be an appropriate base to give 22 in 98% Scheme 2. Electrophilic Glycosylation by Using Thiofuranoid Glycals 11-13 and Transformation of 17β to the 4'-Ethynyl Analogue 21

yield. When **20** was converted to its oxime and then reacted with MsCl in pyridine, spontaneous formation of the 4'-cyano derivative **23** was observed (Figure 4).

The 4'-carbon-substituted derivatives thus far prepared were deprotected to yield the corresponding free (\pm) -4'-thiostavudines (24–29). Compound 26, 4'-carbamoyl-4'-thiostavudine, was prepared from 18 by a conventional reaction sequence: desilyl-ation, acetylation, and ammonolysis. Table 1 summarizes anti-HIV-1 activity and cytotoxicity of 24–29, together with those of stavudine and 4'-ethynylstavudine (4). It is consistent with our previous observation^{8,9,22,23} that only compounds having an sp-hybridized 4'-carbon substituent (28 and 29) show inhibitory activity against HIV-1. The fact that the 4'-ethynyl analogue (29) is more inhibitory than the 4'-cyano analogue (28) also follows our previous observation in the case of 4'-substituted stavudines.²²

Since (\pm) -4'-ethynyl-4'-thiostavudine (**29**) was almost as active as stavudine, its optical resolution was carried out. After esterification of **29** with (–)-camphanic chloride, HPLC separation (CHCl₃/MeOH = 200/1) enabled us to isolate the two diastereomers. Each diastereomer was then treated with K₂CO₃/MeOH to give the respective optically active **29**.²⁴ From the anti-HIV assay of the separated enantiomers, it was concluded

Table 1. Anti-HIV-1 Activity of 24-29 in MT-4 Cells

compound	4'-substituent	$EC_{50}{}^{a}(\mu M)$	$\text{CC}_{50}^{b}(\mu\text{M})$
24	CH ₂ OH	>100	>100
25	CO_2Me	>100	>100
26	$CONH_2$	>100	>100
27	CH=CH ₂	>100	>100
28	CN	7.6	>100
29	C≡CH	0.74	>100
(-)-29	C≡CH	0.37	>100
(+)-29	C≡CH	>20	>100
stavudine		0.51	>100
4'-ethynyl- stavudine (4)		0.060	>100

^{*a*} Inhibitory concentration required to achieve 50% protection of MT-4 cells against the cytopathic effect of HIV-1 IIIB. ^{*b*} Cytotoxic concentration required to reduce the viability of mock-infected MT-4 cells by 50%.

that the observed activity of **29** derived from (-)-**29**. Although the actual configuration of (-)-**29** is not known at the moment, it may be possible to assume that this compound has D-configuration, since the L-isomer of stavudine has been reported not to be inhibitory against HIV-1.²⁵

Conclusion

Our recent finding that 4'-ethynylstavudine is a highly promising anti-HIV agent led us to carry out the present study. Synthesis of (\pm) -4'-ethynyl-4'-thiostavudine (**29**) and its analogues having a carbon substituent at the 4'-position was accomplished based on stereoselective electrophilic addition of NIS/bis(trimethylsilyl)thymine to the 4-thiofuranoid glycal **13**. The resulting major product (**16** β), upon reaction with activated Zn, gave the elimination product **18** in almost quantitative yield. Manipulation of the carbomethoxy group in **18** allowed the preparation of other 4'-carbon-substituted 4'-thiostavudines. Among six 4'-carbon-substituted (\pm)-4'-thiostavudines synthesized in the present study, the 4'-cyano (**28**) and 4'-ethynyl (**29**) analogues showed inhibitory activity against HIV-1, suggesting that the presence of an sp-hybridized carbon substituent at the 4'-position is crucial for the activity. It should be noted that 4'-thiostavudine itself has been reported not to be inhibitory against HIV.²⁶ The most active compound, (\pm) -4'-ethynyl-4'thiostavudine (**29**), showed EC₅₀ of 0.74 μ M, which is almost comparable to that of stavudine. Optical resolution of **29** revealed that its *levo*-enantiomer is the active component.

Experimental Section

Chemistry. Melting points were determined on a Yanaco micro melting point apparatus and are uncorrected. ¹H NMR and ¹³C NMR were measured on a JEOL JNM-LA 500 (500 MHz). Chemical shifts are reported relative to Me₄Si. Mass spectra (MS) were taken in FAB mode with *m*-nitrobenzyl alcohol as a matrix on a JEOL JMS-700. Ultraviolet spectra (UV) were recorded on a JASCO V-530 spectrophotometer. Column chromatography was carried out on silica gel (Micro Bead Silica Gel PSQ 100B, Fuji Silysia Chemical Ltd.). Thin layer chromatography (TLC) was performed on silica gel (precoated silica gel plate F₂₅₄, Merck). Where necessary, analytical samples were purified by high-performance liquid chromatography (HPLC). HPLC was carried out on a Shimadzu LC-6AD with a Shim-pack PREP-SIL (H)'KIT column (2 cm × 25 cm).

Methyl 2-Hydroxymethyl-3-oxotetrahydrothiophen-2-carboxylate (6). A mixture of **5** (10.0 g, 62.4 mmol), 38% aqueous solution of HCHO (60 mL, 759 mmol), and AcOH (7.15 mL, 125 mmol) was stirred at rt overnight. The reaction mixture was partitioned between CH₂Cl₂ and saturated aqueous NaHCO₃. Column chromatography (hexane/EtOAc = 1/1) of the organic layer gave **6** (11.2 g, 95%) as an oil: ¹H NMR (CDCl₃) δ 2.74 (2H, m, H-4 or H-5), 2.80 (1H, br, OH), 2.95 (1H, m, H-4 or H-5), 3.04 (1H, m, H-4 or H-5), 3.79 (3H, s, CO₂Me), 4.04 (2H, m, CH₂OH); ¹³C NMR (CDCl₃) δ 23.7 (C-4 or C-5), 40.0 (C-4 or C-5), 53.1 (CO₂Me), 62.8 (C-2), 64.0 (C-5), 170.3 (CO₂Me) 209.2 (C-3); FAB-MS (*m*/*z*) 191 (M⁺ + H). Anal. Calcd for C₇H₁₀O₄S: C, 44.20; H, 6.07; N, 5.30. Found: C, 44.19; H, 6.00; N, 5.26.

Methyl 2-(tert-Butyldiphenylsilyloxy)methyl-3-oxotetrahydrothiophen-2-carboxylate (7). A mixture of 6 (500 mg, 2.62 mmol), imidazole (269 mg, 3.94 mmol), and tert-butyldiphenylsilyl chloride (TBDPSCl; 0.75 mL, 2.89 mmol) in DMF (5.0 mL) was stirred at rt overnight. The reaction mixture was partitioned between CH2Cl2 and saturated aqueous NaHCO₃. Column chromatography (hexane/ EtOAc = 20/1) of the organic layer gave 7 (1.00 g, 89%) as a solid. Crystallization from hexane-Et₂O gave an analytical sample: mp 85-88 °C; ¹H NMR (CDCl₃) δ 1.02 (9H, s, SiBu-*t*), 2.78 and 2.92 (2H, each as m, H-5), 3.16 (3H, s, CO₂Me), 3.95 and 4.27 (2H, each as d, $J_{gem} = 10.3$ Hz, CH₂OSi), 7.37–7.45 (6H, m, Ph), 7.66-7.73 (4H, m, Ph); ¹³C NMR(CDCl₃) δ 19.2 (SiCMe₃), 24.2 (C-4), 26.6 (SiCMe₃), 40.7 (C-5), 52.9 (CO₂Me), 64.0 (C-2), 64.9 (CH2OSi), 127.7, 127.8, 129.8, 129.9, 135.6 and 135.7 (Phtertiary), 132.5 and 132.6 (Ph-quaternary), 169.6 (CO₂Me) 208.9 (C-3); FAB-MS (m/z) 429 (M⁺ + H). Anal. Calcd for C₂₃H₂₈O₄-SSi: C, 64.45; H, 6.59. Found: C, 64.37; H, 6.55.

Methyl 2-(tert-Butyldiphenylsilyloxy)methyl-3-oxo-2,3-dihydrothiophen-2-carboxylate (8). To a solution of 7 (2.66 g, 6.19 mmol) in CH₂Cl₂ (12.5 mL) was added NCS (860 mg, 6.44 mmol) at 0 °C under positive pressure of dry Ar. The reaction mixture was stirred at rt for 2.5 h and then partitioned between CH₂Cl₂ and saturated aqueous NaHCO₃. Column chromatography (hexane/ EtOAc = 10/1) of the organic layer gave 8 (2.43 g, 92%) as a solid. Crystallization from hexane-Et₂O gave an analytical sample: mp 102-106 °C; ¹H NMR (CDCl₃) δ 0.98 (9H, s, SiBut), 3.71 (3H, s, CO₂Me), 4.21 and 4.30 (2H, each as d, $J_{gem} = 10.3$ Hz, CH₂OSi), 6.19 (1H, d, $J_{4,5} = 5.7$ Hz, H-4), 7.38–7.45 (6H, m, Ph), 7.62–7.63 (4H, m, Ph), 8.45 (1H, d, $J_{4,5} = 5.7$ Hz, H-5); ¹³C NMR(CDCl₃) δ 19.5 (SiCMe₃), 26.5 (SiCMe₃), 53.3 (CO₂Me), 65.2 (CH₂OSi) 47.5 (C-2), 121.8 (C-4), 127.7, 127.8, 129.9 and 135.6 (Ph-tertiary), 132.4 and 132.6 (Ph-quaternary), 163.3 (C-5), 166.7 (CO_2Me) , 199.3 (C-3); FAB-MS (m/z) 427 (M⁺ + H). Anal. Calcd for C₂₃H₂₆O₄SSi: C, 64.76; H, 6.14. Found: C, 64.60; H, 6.13.

Methyl 2-(*tert*-Butyldiphenylsilyloxy)methyl-(*trans*-3-hydroxy)-2,3-dihydro-thiophen-2-carboxylate (9) and 2-(*tert*-Butyldiphenylsilyloxy)methyl-(*trans*-3-hydroxy)-2,3-dihydrothiophen-2-carbaldehyde (10). A solution of 8 (9.0 g, 21.1 mmol) and CeCl₃·7H₂O (7.76 g, 21.1 mmol) in MeOH (225 mL)/THF (75 mL) was cooled to -50 °C under positive pressure of dry Ar. To this was added NaBH₄ (1.20 g, 31.6 mmol) by portions over 0.5 h. After being stirred for 1.5 h, the reaction mixture was quenched by addition of AcOH and acetone and then partitioned between CH₂Cl₂ and saturated aqueous NaHCO₃. Column chromatography of the organic layer gave 9 (eluted with hexane/EtOAc = 10/1, 7.92 g, 89%, containing its epimer) and 10 (eluted with hexane/EtOAc = 5/1, 500 mg, 6%). An analytically pure 9 was obtained by crystallization from hexane–Et₂O.

Physical data for **9**: mp 53–57 °C; ¹H NMR (CDCl₃) δ 1.04 (9H, s, SiBu-*t*), 2.48 (1H, d, $J_{3,OH} = 6.1$ Hz, OH), 3.72 (3H, s, CO₂Me), 4.18 and 4.26 (2H, each as d, $J_{gem} = 9.8$ Hz, CH₂OSi), 5.65 (1H, ddd, $J_{3,OH} = 6.1$ Hz, $J_{3,4} = 2.9$ Hz, $J_{3,5} = 0.7$ Hz, H-3), 5.76 (1H, dd, $J_{4,5} = 6.1$ Hz and $J_{3,4} = 2.9$ Hz, H-4), 6.25 (1H, dd, $J_{4,5} = 6.1$ Hz and $J_{3,5} = 0.7$ Hz, H-5), 7.38–7.45 (6H, m, Ph), 7.63–7.67 (4H, m, Ph); ¹³C NMR (CDCl₃) δ 19.2 (SiCMe₃), 26.7 (SiCMe₃), 52.7 (CO₂Me), 64.3 (CH₂OSi) 65.3 (C-2), 79.9 (C-3), 124.5 (C-4), 127.7 (C-5), 127.8, 130.0, 135.5 and 135.6 (Phteriary), 132.4 and 132.5 (Ph-quaternary), 172.1 (CO₂Me); FAB-MS (m/z) 467 (M⁺ + K). Anal. Calcd for C₂₃H₂₈O₄SSi: C, 64.45; H, 6.59. Found: C, 64.20; H, 6.61.

Physical data for **10**: ¹H NMR (CDCl₃) δ 1.07 (9H, s, SiBu-*t*), 2.44 (1H, d, $J_{3,OH} = 8.5$ Hz, OH), 3.96 and 4.07 (2H, each as d, $J_{gem} = 10.5$ Hz, CH₂OSi), 5.29 (1H, ddd, $J_{3,OH} = 8.5$ Hz and $J_{3,4} = 2.4$ Hz, $J_{3,5} = 1.5$ Hz, H-3), 5.76 (1H, dd, $J_{4,5} = 6.0$ Hz and $J_{3,4} = 2.4$ Hz, H-4), 6.26 (1H, dd, $J_{4,5} = 6.0$ Hz and $J_{3,5} = 1.5$ Hz, H-5), 7.38–7.47 (6H, m, Ph), 7.63–7.69 (4H, m, Ph), 9.82 (1H, s, CHO); FAB-MS (*m*/*z*) 437 (M⁺ + K).

Methyl trans-3-Benzoyloxy-2-(tert-butyldiphenylsilyloxy)methyl-2,3-dihydro-thiophen-2-carboxylate (13). To a mixture of 9 (3.43 g, 8.01 mmol), 4-dimethylaminopyridine (DMAP; 1.27 g, 10.41 mmol), and i-Pr₂NEt (1.4 mL, 10.41 mmol) was added BzCl (1.21 mL, 10.41 mmol) at rt. The reaction mixture was stirred at rt overnight and partitioned between CH₂Cl₂ and saturated aqueous NaHCO₃. Column chromatography (hexane/EtOAc = 4/1) of the organic layer gave 13 (3.93 g, 94%) as an oil, which was crystallized from Et₂O-hexane: mp 111-114 °C; ¹H NMR (CDCl₃) & 0.94 (9H, s, SiBu-t), 3.73 (3H, s, CO₂Me), 4.21 and 4.37 (2H, each as d, $J_{gem} = 9.7$ Hz, CH₂OSi), 5.90 (1H, dd, $J_{4,5} =$ 5.7 Hz and $J_{3,4} = 2.9$ Hz, H-4), 6.46 (1H, d, $J_{4,5} = 5.7$ Hz, H-5), 6.74 (1H, dd, J_{3,4} = 2.9 Hz, H-3), 7.07-7.10 (2H, m, Ph), 7.26-7.31 (1H, m, Ph), 7.33-7.43 (7H, m, Ph), 7.55-7.58 (3H, m, Ph), 7.90-7.92 (2H, m, Ph); ¹³C NMR(CDCl₃) δ 19.0 (SiCMe₃), 26.5 (SiCMe₃), 52.9 (CO₂Me), 63.2 (CH₂OSi) 66.3 (C-2), 79.1 (C-3), 121.9 (C-4), 131.1 (C-5), 127.5, 127.6, 128.4, 129.8, 130.0, 133.0, 135.4 and 135.7 (Ph-tertiary), 129.6, 132.5 and 132.6 (Phquaternary), 165.0 (COPh), 171.4 (CO2Me); FAB-MS (m/z) 533 $(M^+ + K)$. Anal. Calcd for $C_{30}H_{32}O_5SSi$: C, 67.64; H, 6.05. Found: C, 67.51; H, 5.96.

1-[[(cis-3-Benzoyloxy)-[cis-2-(tert-butyldiphenylsilyloxy)methyl]-(trans-4-iodo)-(trans-2-carbomethoxy)tetrahydrothiophen-5-yl]]thymine (17β) and 1-[[(trans-3-Benzoyloxy)-[trans-2-(tert-buty]diphenylsilyloxy)methyl]-(trans-4-iodo)-(cis-2-carbomethoxy)tetrahydrothiophen-5-yl]thymine (17a). A mixture of thymine (1.78 g, 14.1 mmol), (Me₃Si)₂NH (150 mL), and (NH₄)₂SO₄ (88 mg) was refluxed with stirring. After complete dissolution of the thymine was confirmed (ca. 7 h), the mixture was evaporated to remove excess (Me₃Si)₂NH. The resulting syrupy residue was dissolved in CH₃CN (50 mL). To this were added a solution of 13 (5.0 g, 9.39 mmol) in CH₃CN (50 mL) and NIS (3.2 g, 14.1 mmol). The reaction mixture was stirred at rt overnight and partitioned between CH₂Cl₂ and aqueous NaHCO₃ containing a small amount of $Na_2S_2O_3$. Column chromatography (hexane/EtOAc = 1/1) of the organic layer gave a mixture of 17β and 17α (7.29 g, 98%) as a solid. Crystallization of this mixture from CH₂Cl₂-hexane gave an analytically pure 17β . Compound 17α was isolated by HPLC (hexane/EtOAc = 1/1) purification and crystallized from Et₂O-hexane to give a sample for X-ray analysis.

Physical data for **17** β : mp 178–180 °C; UV (MeOH) λ_{max} 265 nm (ϵ 12 300), λ_{min} 249 nm (ϵ 8000); ¹H NMR (CD₂Cl₂) δ 1.13 (9H, s, SiBu-t), 1.51 (3H, d, $J_{6:Me} = 1.2$ Hz, 5-Me), 3.84 (3H, s, CO₂Me), 4.27 (2H, s, H-5'), 5.29 (1H, t, $J_{2',3'} = J_{1',2'} = 10.7$ Hz, H-2'), 6.19 (1H, d, $J_{2',3'} = 10.7$ Hz, H-3'), 6.64 (1H, d, $J_{1',2'} = 10.7$ Hz, H-1'), 7.32 (1H, d, $J_{6:Me} = 1.2$ Hz, H-6), 7.34–7.60 (1H, m, Ph), 7.44–7.57 (6H, m, Ph), 7.70–7.78 (6H, m, Ph), 8.12–8.14 (2H, m, Ph), 9.83 (1H, br, NH); ¹³C NMR(CD₂Cl₂) δ 12.6 (5-Me), 20.1 (SiCMe₃), 27.8 (SiCMe₃), 28.1 (C-2'), 54.1 (CO₂Me), 60.3 (C-1'), 62.0 (C-4'), 65.8 (C-5'), 81.5 (C-3'), 96.9 (C-5), 128.8, 128.9, 129.4, 130.9, 131.0, 131.1, 134.6, 136.1 and 136.3 (Ph-tertiary), 129.4, 132.7 and 133.6 (Ph-quaternary), 135.0 (C-6), 151.5 (C-2), 164.1 (C-4), 165.9 (COPh), 170.7 (CO₂Me); FAB-MS (*m*/z) 785 (M⁺ + H). Anal. Calcd for C₃₅H₃₇IN₂O₇SSi: C, 53.57; H, 4.75; N, 3.57. Found: C, 53.44; H, 4.64; N, 3.53.

Physical data for 17 α : mp 221–223 °C; UV (MeOH) λ_{max} 265 nm (ϵ 12 500), λ_{min} 249 nm (ϵ 8000); ¹H NMR (CD₂Cl₂) δ 0.93 (9H, s, SiBu-t), 1.93 (3H, d, $J_{6,Me} = 1.2$ Hz, 5-Me), 3.70 (3H, s, CO_2Me), 4.03 and 4.10 (2H, each as d, $J_{gem} = 10.0$ Hz, H-5'), 5.03 (1H, dd, $J_{1',2'} = 11.2$ Hz and $J_{2',3'} = 2.9$ Hz, H-2'), 6.53 (1H, d, $J_{2',3'}$ =2.9 Hz, H-3'), 6.57 (1H, d, $J_{1',2'}$ = 11.2 Hz, H-1'), 6.53-6.58 (2H, m, Ph), 7.09 (1H, d, $J_{6,Me} = 1.2$ Hz, H-6), 7.22–7.35 (5H, m, Ph), 7.39-7.44 (1H, m, Ph), 7.50-7.56 (4H, m, Ph), 7.68-7.72 (1H, m, Ph), 7.72-8.10 (2H, m, Ph), 8.70 (1H, br, NH); ¹³C NMR (CD₂Cl₂) δ 13.1 (5-Me), 19.3 (SiCMe₃), 26.9 (SiCMe₃), 28.6 (C-2'), 53.8 (CO₂Me), 64.5 (C-4'), 65.3 (C-5'), 66.2 (C-1'), 76.1 (C-3'), 113.7 (C-5), 128.0, 128.2, 129.4, 130.2, 130.5, 130.6, 134.4, 135.9 and 136.3 (Ph-tertiary), 129.6, 132.7 and 132.8 (Phquaternary), 134.9 (C-6), 151.0 (C-2), 163.4 (C-4), 164.4 (COPh), 173.0 (CO₂Me); FAB-MS (m/z) 785 (M⁺ + H). Anal. Calcd for C₃₅H₃₇IN₂O₇SSi'1/3H₂O: C, 53.16; H, 4.80; N, 3.54. Found: C, 53.17; H, 4.72; N, 3.45.

(±)-5'-O-(tert-Butyldiphenylsilyl)-4'-carbomethoxy-2',3'-didehydro-3'-deoxy-4'-thiothymidine (18). A mixture of 17β (2.27 g, 2.89 mmol) in THF (11.6 mL), AcOH (8.3 mL), and activated Zn, prepared from Zn powder (537 mg, 8.24 mmol) according to the published procedure,¹⁸ was stirred at rt for 1 h. The reaction mixture was quenched by adding saturated aqueous NaHCO₃, and filtered through a Celite pad. The filtrate was partitioned between CH₂Cl₂ and saturated aqueous NaHCO3. Column chromatography (hexane/ EtOAc = 3/1) of the organic layer gave 18 (1.55 g, 99%) as a solid. Crystallization from CH₂Cl₂-hexane gave an analytical sample: mp 184–185 °C; UV (MeOH) λ_{max} 271 nm (ϵ 10 000), λ_{\min} 240 nm (ϵ 2900); ¹H NMR (CDCl₃) δ 1.06 (9H, s, SiBu-t), 1.68 (3H, d, $J_{6,Me} = 1.2$ Hz, 5-Me), 3.79 and 4.26 (2H, each as d, $J_{\text{gem}} = 9.7 \text{ Hz}, \text{H-5'}$, 3.80 (3H, s, CO₂Me), 5.83 (1H, dd, $J_{2',3'} =$ 6.3 Hz and $J_{1',2'} = 2.4$ Hz, H-2'), 6.55 (1H, dd, $J_{2',3'} = 6.3$ Hz and $J_{1',3'} = 1.9$ Hz, H-3'), 6.78 (1H, d, $J_{6,Me} = 1.2$ Hz, H-6), 7.08 (1H, dd, $J_{1',2'} = 2.4$ Hz and $J_{1',3'} = 1.9$ Hz, H-1'), 7.38–7.46 (6H, m, Ph), 7.64-7.67 (4H, m, Ph), 8.91 (1H, br, NH); ¹³C NMR(CDCl₃) δ 12.5 (5-Me), 19.3 (SiCMe₃), 26.6 (SiCMe₃), 53.1 (CO₂Me), 67.5 (C-1'), 69.8 (C-4'), 70.2 (C-5'), 112.2 (C-5), 129.3 (C-2'), 135.1 (C-6), 127.9, 130.1, 135.4 and 135.5 (Ph-tertiary), 132.2 and 132.7 (Ph-quaternary), 136.9 (C-3'), 150.3 (C-2), 163.2 (C-4), 171.3 (CO_2Me) ; FAB-MS (m/z) 537 $(M^+ + H)$. Anal. Calcd for C₂₈H₃₂N₂O₅SSi·1/3H₂O: C, 61.97; H, 6.07; N, 5.16. Found: C, 61.99; H, 6.00; N, 5.05.

(±)-5'-O-(*tert*-Butyldiphenylsilyl)-2',3'-didehydro-3'-deoxy-4'hydroxymethyl-4'-thiothymidine (19). To a solution of 18 (1.0 g, 1.86 mmol) in MeOH (10 mL) was added NaBH₄ (2.8 g, 74.5 mmol) by portions at 0 °C. The reaction mixture was stirred at rt for 3 h, quenched by adding AcOH, and then extracted with CH₂Cl₂. Column chromatography (hexane/EtOAc = 1/1) of the extract gave **19** (933 mg, 98%) as a solid. Crystallization from CH₂Cl₂-hexane gave an analytical sample: mp 166–171 °C; UV (MeOH) λ_{max} 272 nm (ϵ 9700), λ_{min} 240 nm (ϵ 2800); ¹H NMR (CDCl₃) δ 1.08 (9H, s, SiBu-*t*), 1.70 (3H, d, J_{6:Me} = 1.1 Hz, 5-Me), 2.36 (1H, dd, J_{5',OH} = 8.0 and J= 5.2 Hz, OH), 3.85–3.95 (4H, m, H-5' and CH₂OH), 5.75 (1H, dd, J_{2',3'} = 6.3 Hz and J_{1',2'} = 2.3 Hz, H-2'), 6.23 (1H, dd, $J_{2',3'} = 6.3$ Hz and $J_{1',3'} = 1.7$ Hz, H-3'), 6.88 (1H, d, $J_{6:Me} = 1.1$ Hz, H-6), 7.09 (1H, dd, $J_{1',2'} = 2.3$ Hz and $J_{1',3'} = 1.7$ Hz, H-1'), 7.38–7.47 (6H, m, Ph), 7.66–7.69 (4H, m, Ph), 9.19 (1H, br, NH); ¹³C NMR(CDCl₃) δ 12.5 (5-Me), 19.3 (SiCMe₃), 26.8 (SiCMe₃), 66.5 (CH₂OH), 66.9 (C-1'), 68.5 (C-5'), 72.4 (C-4'), 112.1 (C-5), 129.2 (C-2'), 135.6 (C-6), 127.8, 127.9 and 135.5 (Ph-tertiary), 132.3 and 132.7 (Ph-quaternary), 138.4 (C-3'), 150.6 (C-2), 163.5 (C-4); FAB-MS (m/z) 509 (M⁺ + H). Anal. Calcd for C₂₇H₃₂N₂O₄SSi: C, 63.75; H, 6.34; N, 5.51. Found: C, 63.67; H, 6.21; N, 5.47.

(±)-5'-O-(tert-Butyldiphenylsilyl)-2',3'-didehydro-3'-deoxy-4'formyl-4'-thiothymidine (20). A mixture of DMSO (0.46 mL, 3.67 mmol), (CF₃CO)₂O (0.06 mL, 0.42 mmol), and CH₂Cl₂ (10.5 mL) was stirred at -80 °C for 15 min under positive pressure of dry Ar. To this was added a CH₂Cl₂ (7 mL) solution of **19** (933 mg, 1.83 mmol). The reaction mixture was stirred at at -80 °C for 1.5 h, quenched by adding Et₃N (0.65 mL), and partitioned between CH₂Cl₂ and saturated aqueous NaHCO₃. Column chromatography (hexane/EtOAc = 1/1) of the organic layer gave **20** (901 mg, 97%) as a solid. Crystallization from CH₂Cl₂-hexane gave an analytical sample: mp 147–152 °C; UV (MeOH) λ_{max} 271 nm (ϵ 10 000), λ_{\min} 240 nm (ϵ 3000); ¹H NMR (CDCl₃) δ 1.06 (9H, s, SiBu-t), 1.66 (3H, d, $J_{6,Me} = 1.1$ Hz, 5-Me), 4.12 and 4.16 (2H, each as d, $J_{\text{gem}} = 10.9 \text{ Hz}, \text{H-5'}$, 6.02 (1H, dd, $J_{2',3'} = 6.3 \text{ Hz}$ and $J_{1',2'} = 2.3$ Hz, H-2'), 6.18 (1H, dd, $J_{2',3'} = 6.3$ Hz and $J_{1',3'} = 1.7$ Hz, H-3'), 6.95 (1H, d, $J_{6,Me} = 1.1$ Hz, H-6), 7.22 (1H, dd, $J_{1',2'} = 2.3$ Hz and $J_{1',3'} = 1.7$ Hz, H-1'), 7.37–7.47 (6H, m, Ph), 7.66–7.71 (4H, m, Ph), 8.19 (1H, br, NH), 9.32 (1H, s, CHO); 13 C NMR (CDCl₃) δ 12.4 (5-Me), 19.2 (SiCMe₃), 26.7 (SiCMe₃), 65.7 (C-5'), 67.5 (C-1'), 76.5 (C-4'), 112.6 (C-5), 127.9 130.0, 130.1, 135.5 and 135.6 (Ph-tertiary), 132.2 and 132.5 (Ph-quaternary), 133.2 (C-3'), 133.3 (C-2'), 135.1 (C-6), 150.5 (C-2), 163.5 (C-4), 192.0 (CHO); FAB-MS (m/z) 507 $(M^+ + H)$. Anal. Calcd for $C_{27}H_{30}N_2O_4SSi$: C, 64.05; H, 5.97; N, 5.53. Found: C, 64.13; H, 6.03; N, 5.41.

(±)-5'-O-(tert-Butyldiphenylsilyl)-2',3'-didehydro-3'-deoxy-4'ethynyl-4'-thiothymidine (21). To a solution of 20 (210 mg, 0.414 mmol) in MeOH (2.1 mL) were added dimethyl 1-diazo-(2oxopropyl)phosphonate (142 mg, 0.75 mmol) and K₂CO₃ (115 mg, 0.83 mmol) under positive pressure of dry Ar. The reaction mixture was stirred at rt for 1.5 h. Quenching of the reaction mixture with saturated aqueous NH₄Cl was followed by extraction with CH₂Cl₂. Column chromatography (hexane/EtOAc = 3/1) of the extract gave 21 (176 mg, 85%) as a solid. Crystallization from CH₂Cl₂-hexane gave an analytical sample: mp 174–176 °C; UV (MeOH) λ_{max} 271 nm (ϵ 10 300), λ_{\min} 240 nm (ϵ 3000); IR (neat) 3069 cm⁻¹ (C≡CH); ¹H NMR (CDCl₃) δ 1.11 (9H, s, SiBu-t), 1.60 (3H, d, $J_{6,Me} = 1.1$ Hz, 5-Me), 2.59 (1H, s, C=CH), 3.90 and 3.95 (2H, each as d, $J_{gem} = 9.7$ Hz, H-5'), 5.80 (1H, dd, $J_{2',3'} = 6.0$ Hz and $J_{1',2'} = 2.3$ Hz, H-2'), 6.23 (1H, dd, $J_{2',3'} = 6.0$ Hz and $J_{1',3'} = 1.7$ Hz, H-3'), 6.93 (1H, d, $J_{6,Me} = 1.1$ Hz, H-6), 7.23 (1H, dd, $J_{1',2'} =$ 2.3 Hz and $J_{1',3'} = 1.7$ Hz, H-1'), 7.37-7.46 (6H, m, Ph), 7.68-7.72 (4H, m, Ph), 8.61 (1H, br, NH); $^{13}\mathrm{C}$ NMR (CDCl₃) δ 12.3 (5-Me), 19.5 (SiCMe₃), 26.8 (SiCMe₃), 61.0 (C-4'), 67.6 (C-1'), 71.4 (C-5'), 73.5 (C=CH), 82.7 (C=CH), 112.1 (C-5), 127.9, 130.0, 130.1 and 135.6 (Ph-tertiary), 128.9 (C-2'), 132.5 and 132.9 (Phquaternary), 135.4 (C-6), 137.8 (C-3'), 150.3 (C-2), 163.2 (C-4); FAB-MS (m/z) 503 $(M^+ + H)$. Anal. Calcd for C₂₈H₃₀N₂O₃SSi: C, 66.90; H, 6.02; N, 5.57. Found: C, 66.96; H, 6.03; N, 5.57.

(±)-2',3'-Didehydro-3'-deoxy-4'-ethynyl-4'-thiothymidine (29). To a THF (0.6 mL) solution of 21 (187 mg, 0.37 mmol) was added Bu₄NF (1 M in THF, 0.51 mL, 0.51 mmol). The reaction mixture was stirred at rt for 1.5 h. Addtion of CH₂Cl₂ and saturated aqueous NaHCO₃ to the reaction mixture gave 29 (54 mg, 55%) as a precipitate: mp 259–262 °C; UV (MeOH) λ_{max} 271 nm (*ε* 10 800), λ_{min} 239 nm (*ε* 3000); IR (neat) 3051 cm⁻¹ (C≡CH); ¹H NMR (DMSO-d₆) δ 1.71 (3H, d, J_{6:Me} = 1.2 Hz, 5-Me), 3.46 (1H, s, C≡CH), 3.58 and 3.79 (2H, each as dd, J_{gem} = 11.3 Hz and J_{5',OH} = 6.1 Hz, H-5'), 5.75 (1H, t, J_{5',OH} = 6.1 Hz, OH), 5.91 (1H, dd, J_{2',3'} = 6.1 Hz and J_{1',2'} = 2.7 Hz, H-2'), 6.08 (1H, dd, J_{2',3'} = 6.1 Hz and J_{1',3'} = 2.0 Hz, H-3'), 6.93 (1H, dd, J_{1',2'} = 2.7 Hz and J_{1',3'} = 2.0 Hz, H-1'), 7.69 (1H, d, J_{6:Me} = 1.2 Hz, H-6), 11.33 (1H, br, NH); ¹³C NMR (DMSO-d₆) δ 12.2 (5-Me), 61.6 (C-4'), 67.4 (C-1'), 68.0 (C-5'), 75.9 (C=CH), 82.8 (C=CH), 109.6 (C-5), 129.1 (C-2'), 136.8 (C-6), 138.0 (C-3'), 150.5 (C-2), 163.6 (C-4); FAB-MS (*m*/*z*) 265 (M⁺+H). Anal. Calcd for C₁₂H₁₂N₂O₃S: C,54.53; H, 4.58; N, 10.60. Found: C, 54.56; H, 4.39; N, 10.81.

Anti-HIV-1 Assay. MT-4 cells²⁷ were maintained in RPMI 1640 medium supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/mL penicillin G, and 100 μ g/mL streptomycin. The III_B strain of HIV-1 was used throughout the experiment. The virus was propagated and titrated in MT-4 cells. Virus stocks were stored -80 °C until use.

The anti-HIV-1 activity of the test compounds was determined by the inhibition of virus-induced cytopathogenicity in MT-4 cells.²⁸ Briefly, MT-4 cells (1×10^5 cells/mL) were infected with HIV-1 at a multiplicity of infection (MOI) of 0.02 and were cultured in the presence of various concentrations of the test compounds. After a 4-day incubation at 37 °C, the number of viable cells was monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method.²⁹ The cytotoxicity of the compounds was evaluated in parallel with their antiviral activity, based on the viability of mock-infected cells as determined by the MTT method.

Acknowledgment. Financial supports from the Japan Society for the Promotion of Science (KAKENHI, Grant No. 18790090 to H.K., No. 17590093 to K.H., and No. 17590094 to H.T.) and the Japan Health Sciences Foundation (Grant SA 14804 to H.T.) are gratefully acknowledged. The authors are also grateful to Ms. K. Shiobara and Y. Odanaka (Center for Instrumental Analysis, Showa University) for technical assistance with NMR, MS, and elemental analyses.

Supporting Information Available: Synthetic procedures and characterization data for 11, 12, 14, 15 β , 15 α , 16 β , 16 α , 22–26, and 28, procedures for optical resolution of 29, and ORTEP drawing of 17 α . This material is available free of charge via the Intermet at http://pubs.acs.org.

References

- (1) Reist, E. J.; Gueffroy, D. E.; Goodman, I. Synthesis of 4-thio-D- and -L-ribofuranose and the corresponding adenine nucleosides. *J. Am. Chem. Soc.* **1964**, *86*, 5658–5663.
- (2) (a) Secrist, J. A., III; Tiwari, K. N.; Riordan, J. M.; Montgomery, J. A. Synthesis and biological activity of 2'-deoxy-4'-thio pyrimidine nucleosides. *J. Med. Chem.* 1991, 34, 2361–2366. (b) Dyson, M. R.; Coe, P. L.; Walker, R. T. The synthesis and antiviral activity of some 4'-thio-2'-deoxy nucleoside analogs. *J. Med. Chem.* 1991, 34, 2782–2786.
- (3) For a review, see: Yokoyama, M. Synthesis and biological activity of thionucleosides. *Synthesis* 2000, 1637–1655.
- (4) Yoshimura, Y.; Kitano, K.; Yamada, K.; Satoh, H.; Watanabe, M.; Miura, S.; Sakata, S.; Sasaki, T.; Matsuda, A. A novel synthesis of 2'-modified 2'-deoxy-4'-thiocytidines from D-glucose. J. Org. Chem. 1997, 62, 3140–3152.
- (5) Miura, S.; Yoshimura, Y.; Endo, M.; Machida, H.; Matsuda, A.; Tanaka, M.; Sasaki, T. Antitumor activity of a novel orally effective nucleoside, 1-(2-deoxy-2-fluoro-4-thio-β-D-arabinofuranosyl)cytosine. *Cancer Lett.* **1998**, *129*, 103–110.
- (6) Jeong, L. S.; Jin, D. Z.; Kim, H. O.; Shin, D. H.; Moon, H. R.; Gunaga, P.; Chun, M. W.; Kim, Y.-C.; Melman, N.; Gao, Z.-G.; Jacobson, K. A. N⁶-substituted D-4'-thioadenosine-5'-methyluronamides: potent and selective agonists at the human A₃ adenosine receptor. J. Med. Chem. **2003**, 46, 3775–3777.
- (7) Haraguchi, K.; Kubota, Y.; Tanaka, H. Ring opening of nucleoside 1',2'-epoxides with organoaluminum reagents: stereoselective entry to ribonucleosides branched at the anomeric position. *J. Org. Chem.* 2004, 69, 1831–1836.
- (8) Haraguchi, K.; Takeda, S.; Tanaka, H.; Nitanda, T.; Baba, M.; Dutschman, G. E.; Cheng, Y.-C. Synthesis of a highly active new anti-HIV agent 2',3'-didehydro3'-deoxy-4'ethynylthymidine. *Bioorg. Med. Chem. Lett.* 2003, 13, 3775–3777.
- (9) Dutschman, G. E.; Grill, S. P.; Gullen, E. A.; Haraguchi, K.; Takeda, S.; Tanaka, H.; Baba, M.; Cheng, Y.-C. Novel 4'-substituted stavudine analog with improved anti-human immunodeficiency virus activity and decreased cytotoxicity. *Antimicrob. Agents Chemother.* **2004**, *48*, 1640–1646.

- (10) Nitanda, T.; Wang, X.; Kumamoto, H.; Haraguchi, K.; Tanaka, H.; Cheng, Y.-C.; Baba, M. Anti-human immunodeficiency virus type 1 activity and resistance profile of 2',3'-didehydro-3'-deoxy-4'ethynylthymidine in vitro. *Antimicrob. Agents Chemother.* 2005, 49, 3355–3360.
- (11) Woodward, R. B.; Eastman, R. H. Tetrahydrothiophene ("thiophane") derivatives. J. Am. Chem. Soc. 1946, 68, 2229–2235.
- (12) (a) Luche, J.-L. Selective 1,2-reduction of conjugated ketones. J. Am. Chem. Soc. 1978, 100, 2226–2227. (b) Luche, J.-L.; Rodriguez-Hahn, L.; Crabbé, P. Reduction of natural enones in the presence of cerium trichloride. J. Chem. Soc., Chem. Commun. 1978, 601–602.
- (13) Kato, K.; Suzuki, H.; Tanaka, H.; Miyasaka, T.; Baba, M.; Yamaguchi, K.; Akita, H. Stereoselective synthesis of 4'-a-alkylcarbovir derivatives based on an asymmetric synthesis or chemoenzymatic procedure. *Chem. Pharm. Bull.* **1999**, *47*, 1256–1264.
- (14) During 3-*O*-acylation of **9**, formation of a small amount of epimer was observed. NMR data of the epimeric isomer of **13**: ¹H NMR (CDCl₃) δ 1.04 (9H, s, SiBu-*t*), 3.77 (3H, s, CO₂Me), 3.82 and 4.24 (2H, each as d, $J_{gem} = 9.5$ Hz, CH₂OSi), 6.14 (1H, dd, Hz, $J_{3,4} = 2.7$ Hz and $J_{4,5} = 6.3$ Hz, H-4), 6.65 (1H, d, $J_{4,5} = 6.3$ Hz, H-5), 6.90 (1H, d, $J_{3,4} = 2.7$ Hz, H-3), 7.32–7.45 (8H, m, ph), 7.53–7.57 (1H, m, Ph), 7.61–7.64 (4H, m, Ph), 7.90–7.92 (2H, m, Ph); ¹³C NMR (CDCl₃) δ 19.3 (SiCMe₃), 26.6 (SiCMe₃), 52.8 (CO₂Me), 69.5 (C-2), 71.3 (CH₂OSi), 85.8 (C-3), 127.7, 128.4, 129.7, 129.8, 133.3 and 135.6 (Ph-tertiary), 129.4, 132.7 and 133.0 (Ph-quaternary), 129.2 (C-4), 137.5 (C-5), 165.9 (COPh), 171.4 (CO₂Me).
- (15) For a review article, see: Trost, B. M. Asymmetric alkylation, an enabling methodology. J. Org. Chem. 2004, 69, 5813–5837.
- (16) (a) Haraguchi, K.; Takahashi, H.; Shiina, N.; Horii, C.; Yoshimura, Y.; Nishikawa, A.; Sasakura, E.; Nakamura, K. T.; Tanaka, H. Stereoselective synthesis of the β-anomer of 4'-thionucleosides based on electrophilic glycosidation to 4-thiofuranoid glycals. J. Org. Chem. 2002, 67, 5919–5927. (b) Haraguchi, K.; Takahashi, H.; Tanaka, H. Stereoselective entry to 1'-C-branched 4'-thionulcosides from 4-thiofuranoid glycals: synthesis of 4'-thioangustmycin C. Tetrahedron Lett. 2002, 43, 5657–5660. (c) Haraguchi, K.; Shiina, N.; Yoshimura, Y.; Shimada, H.; Hashimoto, K.; Tanaka, H. Novel stereoselective entry to 2'-β-carbon-substituted 2'-deoxy-4'-thionucleosides from 4-thiofuranoid glycals. Org. Lett. 2004, 6, 2645–2648. (d) Haraguchi, K.; Takahashi, H.; Tanaka, H.; Hayakawa, H.; Ashida, N.; Nitanda, T.; Baba, M. Synthesis and antiviral activities of 1'-carbon-substituted 4'-thiothymidines. Bioorg. Med. Chem. 2004, 12, 5309–5316.
- (17) NMR assignments of 15–17 are given according to the numbering of usual nucleosides.
- (18) For ORTEP drawing and X-ray crystallographic data of 17α , see supporting information.
- (19) Mansuri, M. M.; Starrett, J. E., Jr.; Wos, J. A.; Tortolani, D. R.; Brodfuehrer, P. R.; Howell, H. G.; Martin, J. C. Preparation of 1-(2,3dideoxy-β-D-glycero-pent-2-enofuranosyl)thymine (d4T) and 2',3'dideoxyadenosine (ddA): General methods for the synthesis of 2',3'olefinic and 2',3'-dideoxy nucleoside analogs active against HIV. J. Org. Chem. **1989**, 54, 4780–4785.
- (20) Miwa, K.; Aoyama, T.; Shioiri, T. Extension of the Colvin rearrangement using trimethylsilyldiazomethane, a new synthesis of alkynes. *Synlett* **1994**, 107–108.
- (21) Ohira, S. Methanolysis of dimethyl (1-diazo-2-oxopropyl)phosphonate: Generation of dimethyl (diazomethyl)phosphonate and reaction with carbonyl compounds. *Synth. Commun.* **1989**, *19*, 561– 564.
- (22) Haraguchi, K.; Itoh, Y.; Takeda, S.; Honma, Y.; Tanaka, H.; Nitanda, T.; Baba, M.; Dutschman, G. E.; Cheng, Y.-C. Synthesis and anti-HIV activity of 4'cyano-2',3'-didehydro-3'-deoxythymidine. *Nucleosides, Nucleotides Nucleic Acids* **2004**, *23*, 647–654.
- (23) Kumamoto, H.; Haraguchi, K.; Tanaka, H.; Nitanda, T.; Baba, M.; Dutschman, G. E.; Cheng, Y.-C.; Kato, K. Synthesis of (±)-4'-ethynyl and 4'-cyano carbocyclic analogues of stavudine (d4T). *Nucleosides, Nucleotides Nucleic Acids* 2005, 24, 73–83.
- (24) Specific rotation: (-)-**29**, $[\alpha]_{D}^{20}$ -150.0 (*c* 0.10, MeOH); (+)-**29**, $[\alpha]_{D}^{20}$ +153.3 (*c* 0.10, MeOH).
- (25) Mansuri, M. M.; Farina, V.; Starrett, J. E., Jr.; Benigni, D. A.; Brankovan, V.; Martin, J. C. Preparation of the geometric isomers of DDC, DDA, D4C and D4T as potential anti-HIV agents. *Bioorg. Med. Chem. Lett.* **1991**, *1*, 65–68.
- (26) Young, R. J.; Shaw-Ponter, S.; Thomson, J. B.; Miller, J. A.; Cumming, J. G.; Pugh, A. W.; Rider, P. Synthesis and antiviral evaluation of enantiomeric 2',3'-dideoxy- and 2',3'-didehydro-2',3'dideoxy-4'-thionucleosides. *Bioorg. Med. Chem. Lett.* **1995**, 5, 2599– 2604.
- (27) Miyoshi, I.; Taguchi, H.; Kubonishi, I.; Yoshimoto, S.; Ohtsuki, Y.; Shiraishi, Y.; Akagi, T. Type C virus-producing cell lines derived from adult T cell leukemia. *Gann Monogr. Cancer Res.* **1982**, *28*, 219–228.

Synthesis and Anti-HIV Activity of 4'-Thiostavudines

- (28) Baba, M.; De Clercq, E.; Tanaka, H.; Ubasawa, M.; Takashima, H.; Sekiya, K.; Nitta, I.; Umezu, K.; Nakashima, H.; Mori, S.; Shigeta, S.; Walker, R. T.; Miyasaka, T. Potent and selective inhibition of human immunodeficiency virus type 1 (HIV-1) by 5-ethyl-6phenylthiouracil derivatives through their interaction with the HIV-1 reverse transcriptase. *Proc. Natl. Acad. Sci. U.S.A.* **1991**, *88*, 2356– 2360.
- (29) Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; J. Desmyter, J.; De Clercq, E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods **1988**, 20, 309–312.

JM060980J